Application of Support Vector Machine Model based on Particle Swarm Optimization for the Evaluation of Products’ Kansei Image

نویسندگان

  • Xuedong Zhang
  • Li Tian
  • Yong Wang
چکیده

With the development of science and technology and ever complicating process of design objects, scientific methods are needed for the evaluation of products’ Kansei image. This present quantitative experiment proposed a SVM model based on PSO for the evaluation of Kansei image as reflected in the Computer numerical control (CNC) machine. For the first place, we obtained the average scores of Kansei image evaluation of the CNC machine by the questionnaire survey. Then the form elements of the CNC machines were analyzed. Lastly, comparison was made concerning the accuracies of the three methods, namely, BP neural networks, SVM based on cross-validation method and SVM based on PSO in the evaluation of CNC machine’s Kansei image. The research used 35 sets of samples for training as the experimental group, and five other groups as the control group. The results showed that statistics obtained from SVM based on PSO came closer to the mean value from the questionnaires than the other two methods, thus justified its role in intervening consumer’s evaluation on the Kansei image of products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

The application of Committee machine with particle swarm optimization to the assessment of permeability based on thin section image analysis

Permeability is the ability of porous rock to transmit fluids and one of the most important properties of reservoir rock because oil production depends on the permeability of reservoirs. Permeability is determined using a variety of methods which are usually expensive and time consuming. Reservoir rock properties with image analysis and intelligent systems has been used to reduce time and money...

متن کامل

Fractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms

   In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015